5,859 research outputs found

    Metal Chalcogenide Clusters with Closed Electronic Shells and the Electronic Properties of Alkalis and Halogens

    Get PDF
    Clusters with filled electronic shells and a large gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are generally energetically and chemically stable. Enabling clusters to become electron donors with low ionization energies or electron acceptors with high electron affinities usually requires changing the valence electron count. Here we demonstrate that a metal cluster may be transformed from an electron donor to an acceptor by exchanging ligands while the neutral form of the clusters has closed electronic shells. Our studies on Co6Te8(PEt3),(CO) (m + n = 6) clusters show that Co6Te8(PEt3)(6) has a closed electronic shell and a low ionization energy of 4.74 eV, and the successive replacement of PEt3 by CO ligands ends with Co6Te8(CO)(6) exhibiting halogen-like behavior. Both the low ionization energy Co6Te8(PEt3)(6) and high electron affinity Co6Te8(CO)(6) have closed electronic shells marked by high HOMO-LUMO gaps of 1.24 and 1.39 eV, respectively. Further, the clusters with an even number of ligands favor a symmetrical placement of ligands around the metal core

    Pseudopotential Calculations for Simple Metals

    Get PDF

    The effect of substituted benzene dicarboxylic acid linkers on the optical band gap energy and magnetic coupling in manganese trimer metal organic frameworks

    Get PDF
    We have systematically studied a series of eight metal-organic frameworks (MOFs) in which the secondary building unit is a manganese trimer cluster, and the linkers are differently substituted benzene dicarboxylic acids (BDC). The optical band gap energy of the compounds vary from 2.62 eV to 3.57 eV, and theoretical studies find that different functional groups result in new states in the conduction band, which lie in the gap and lower the optical band gap energy. The optical absorption between the filled Mn 3d states and the ligands is weak due to minimal overlap of the states, and the measured optical band gap energy is due to transitions on the BDC linker. The Mn atoms in the MOFs have local moments of 5 mu B, and selected MOFs are found to be antiferromagnetic, with weak coupling between the cluster units, and paramagnetic above 10 K

    Stable T2Sin (T=Fe,Co,Ni,1≤n≤8) cluster motifs

    Get PDF
    First principles studies on the geometry, electronic structure, and magnetic properties of neutral and anionic Fe2Sin, Co2Sin, and Ni2Sin (1≤n≤8) clusters have been carried out within a gradient corrected density functional framework. It is shown that these clusters display a variety of magnetic species with varying magnetic moment and different magnetic coupling between the two transition metal atoms. While Fe2Sin clusters are mostly ferromagnetic with large moments, Ni2Sin clusters are mostly nonmagnetic. Our studies of the variation of the binding energy upon addition of successive Si atoms and the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital indicate that many of the motifs are quite stable and could be suitable as building blocks for generating magnetic cluster assembled materials. The studies also reveal motifs that could be used in molecular electronic devices to generate spin polarized currents or large magnetoresistance
    corecore